Quantum Computers

Tarun Sinha
MBA-IT

Introduction

          In 1947, American computer engineer Howard Aiken said that just six electronic digital computers would satisfy the computing needs of the United States. Others have made similar errant predictions about the amount of computing power that would support our growing technological needs. Of course, Aiken didn't count on the large amounts of data generated by scientific research, the proliferation of personal computers or the emergence of the Internet, which have only fueled our need for more, more and more computing power.

          Will we ever have the amount of computing power we need, or want? If, as Moore's Law states, the number of transistors on a microprocessor continues to double every 18 months, the year 2020 or 2030 will find the circuits on a microprocessor measured on an atomic scale. And the logical next step will be to create quantum computers, which will harness the power of atoms and molecules to perform memory and processing tasks. Quantum computers have the potential to perform certain calculations billions of times faster than any silicon-based computer.

What is a quantum computer?

          A quantum computer is a machine that performs calculations based on the laws of quantum mechanics, which is the behavior of particles at the sub-atomic level.

Quantum computing is the area of study focused on developing computer technology based on the principles of quantum theory, which explains the nature and behaviour of energy and matter on the quantum (atomic and subatomic) level. Development of a quantum computer, if practical, would mark a leap forward in computing capability far greater than that from the abacus to a modern day supercomputer, with performance gains in the billion-fold realm and beyond. The quantum computer, following the laws of quantum physics, would gain enormous processing power through the ability to be in multiple states, and to perform tasks using all possible permutations simultaneously. Current centres of research in quantum computing include MIT, IBM, Oxford University, and the Los Alamos National Laboratory.

Representation of Data - Qubits

          A qubit is a quantumbit, the counterpart in quantum computing to the binary digit or bit of classical computing. Just as a bit is the basic unit of information in a classical computer, a qubit is the basic unit of information in a quantum computer.

          In a quantum computer, a number of elemental particles such as electrons or photons can be used (in practice, success has also been achieved with ions), with either their charge or polarization acting as a representation of 0 and/or 1. Each of these particles is known as a qubit; the nature and behaviour of these particles (as expressed in quantum theory) form the basis of quantum computing. The two most relevant aspects of quantum physics are the principles of superposition and entanglement.

          In 1998, Los Alamos and MIT researchers managed to spread a single qubit across three nuclear spins in each molecule of a liquid solution of alanine or trichloroethylene molecules. Spreading out the qubit made it harder to corrupt, allowing researchers to use entanglement to study interactions between states as an indirect method for analyzing the quantum information.

          In August 2000, researchers at IBM-Almaden Research Center developed what they claimed was the most advanced quantum computer developed to date. The 5-qubit quantum computer was designed to allow the nuclei of five fluorine atoms to interact with each other as qubits, be programmed by radio frequency pulses and be detected by nuclear magnetic resonance (NMR) instruments similar to those used in hospitals. Led by Dr. Isaac Chuang, the IBM team was able to solve in one step a mathematical problem that would take conventional computers repeated cycles. The problem, called order-finding, involves finding the period of a particular function, a typical aspect of many mathematical problems involved in cryptography.

          In March 2000, scientists at Los Alamos National Laboratory announced the development of a 7-qubit quantum computer within a single drop of liquid. The quantum computer uses NMR to manipulate particles in the atomic nuclei of molecules of trans-crotonic acid, a simple fluid consisting of molecules made up of six hydrogen and four carbon atoms. The NMR is used to apply electromagnetic pulses, which force the particles to line up. These particles in positions parallel or counter to the magnetic field allow the quantum computer to mimic the information-encoding of bits in digital computers.